
Greedy Algorithm

Greedy algorithms are a powerful tool in algorithm design. They should always be the
first thing you try when you encounter a new problem. They are intuitive and simple
to implement—but sometimes proving their correctness can be tricky. Let us see a few
examples.

Interval Scheduling Problem

Given a set J of jobs, where each job j ∈ J comes with a release time r(j) and a
deadline d(j), we want to choose a maximum subset J ′ ⊆ J so that no two jobs chosen
in J ′ “overlap”.

There are quite a few possible greedy algorithms (based on your strategy). The
following is the “right” one: recursively, we take the first job with the earliest deadline
that does not conflict with any job that we have already taken so far.

How do we prove this is the right algorithm? Our proof strategy is to establish the
following invariant. Let us call the jobs that are chosen by our greedy a1, · · · ah and
those chosen by optimal solution b1, · · · , bk. We will show by induction that for all i,
d(ai) ≤ d(bi). Certainly this is true when i = 1. For the induction step i > 1, we
know that d(ai−1) ≤ d(bi−1) ≤ r(bi)—this implies that after our algorithm has chosen
a1, · · · , ai−1, bi will be a candidate (it does not conflict any of the jobs chosen by greedy
so far), so by our greedy, we know that d(ai) ≤ d(bi). Now the correctness of our greedy
follows from this simple invariant.

Minimum Cost Spanning Tree

Given a graph G = (V,E) with edge costs c : E → R+, we want a spanning tree (a tree
that connects all vertices) T with the minimum cost. To make our analysis simpler, we
assume that all edge costs are different (this assumption can be removed if we just add
some tiny “perturbation” to the edge costs).

There are two famous algorithms to solve the problem otpimally—both are greedy:
Kruskal and Prim. In the former, we sort edges by increasing costs. We proceed by
adding a new edge as long as it does not create a cycle. In the latter, we choose an
arbitrary vertex as the initial tree T . We then “grow” the tree T by choosing the
cheapest edge connecting T with the rest of the vertices that are not part of T .

Both algorithms can be proved by the important cut property, which states the
following.

(Cut Property) Given a subset S so that ∅ (S (V , the cheapest edge e
in δ(S) (which means the set of edges with one endpoint in S and the other
in V \S) must be part of the minimum spanning tree.

Let us prove this by contradiction. Suppose that e = (u, v) is the cheapest edge in
δ(S) but it is not part of the optimal tree T . Suppose further that u ∈ S and v ∈ V \S.
Remember that T is a spanning tree. So there must be a path P ⊆ T between u and v.

1

Notice that there must exist (w, x) along this path so that w ∈ S and x ∈ V \S (why?)
and we know that c(w, x) > c(u, v).

Now as (u, v) ∪ P forms cycle C, we can modify the tree T so that it becomes
T\(w, x) ∪ (u, v). This new tree is still a spanning tree and the cost strictly goes down,
giving a contradiction to the assumption that T is the optimal tree.

It should be a simple matter to use this cut property to prove the correctness of
algorithms of Kruskal and Prim.

Minimum Weighted Sum of Completion Time

We are given a set of jobs j ∈ J , each with a size sj and a weight wj . Given a linear
order ≺ over the jobs in J , the completion time of the job j is defined as Cj =

∑
j′�j sj′ .

Our goal is to find a good order so that
∑

j∈J wjCj is minimized—this is one of the
famous scheduling problems.

This problem again can be solved by a greedy algorithm: this greedy is usually called
Smith Rule. We order the jobs by their increasing density : sj/wj .

So suppose that Smith Rule does not give the optimal solution and we will try to
give a contradiction. To simplify notation, we assume that in the optimal solution, the
order of the jobs is simply 1, 2, · · ·n. Since optimal solution does not use Smith Rule, it
means that there exist two consecutive jobs t and t+ 1 so that st

wt
> st+1

wt+1
.

Let us “flip” the order of the two jobs t and t+1. Notice that after this flip, all other
jobs still have the same completion time. So only these two jobs have their completion
times changed. Now what difference of the objective will be

wt(

t∑
j=1

sj) + wt+1(

t+1∑
j=1

sj)− wt(

t+1∑
j=1

sj)− wt+1(

t−1∑
j=1

sj + st+1) = wt+1st − wtst+1 > 0,

a contradiction.

2

